Milne's volume function and vector symmetric polynomials

نویسندگان

  • Emmanuel Briand
  • Mercedes Rosas
چکیده

Abstract. The number of real roots of a system of polynomial equations fitting inside a given box can be counted using a vector symmetric polynomial introduced by P. Milne, the volume function. We provide the expansion of Milne’s volume function in the basis of monomial vector symmetric functions, and observe that only monomial functions of a particular kind appear in the expansion, the squarefree monomial functions. By means of an appropriate specialization of the vector symmetric Newton identities, we derive an inductive formula that expresses the squarefree monomial functions in the power sums basis. As a corollary, we obtain an inductive formula that writes Milne’s volume function in the power sums basis. The lattice of the sub–hypergraphs of an hypergraph appears in a natural way in this setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling and vibration analysis of angle -ply symmetric laminated composite plates with fully elastic boundaries

The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that o...

متن کامل

A mixed finite element for weakly-symmetric elasticity

We develop a finite element discretization for the weakly symmetric equations of linear elasticity on tetrahedral meshes. The finite element combines, for r ≥ 0, discontinuous polynomials of r for the displacement, H(div)-conforming polynomials of order r+1 for the stress, and H(curl)-conforming polynomials of order r + 1 for the vector representation of the multiplier. We prove that this tripl...

متن کامل

Hopf Algebras and Edge-labeled Posets

Given a nite graded poset with labeled Hasse diagram, we construct a quasi-symmetric generating function for chains whose labels have xed descents. This is a common generalization of a generating function for the ag f-vector de-ned by Ehrenborg and of a symmetric function associated to certain edge-labeled posets which arose in the theory of Schubert polynomials. We show this construction gives...

متن کامل

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

Coefficient Estimates for a General Subclass of m-fold Symmetric Bi-univalent Functions by Using Faber Polynomials

In the present paper, we introduce a new subclass H∑m (λ,β)of the m-fold symmetric bi-univalent functions. Also, we find the estimates of the Taylor-Maclaurin initial coefficients |am+1| , |a2m+1| and general coefficients |amk+1| (k ≥ 2) for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2009